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Abstract. We investigate the dependence of the multi-hapsack objective function on the 
knapsack capacities and on the number of capacity constraints P.  in the case when all N objects 
ax assigned the same profit value and the weights are uniformly distributed over the unit interval. 
A rigorous upper bound to the optimal profit is obtained employing the annealed approximation 
and then compared with the exact value obtained through the L a p p i a n  relaxation method. 
The analysis is restricted to the regime where N goes to infinity and P remains finite. 

1. Introduction 

The simplest and probably the most studied integer programming problem is the knapsack 
problem (Salkin 1975, Martello and Toth 1990). This interest stems from the many important 
applications involving the knapsack problem such as capital budgeting, cutting stock and 
cargo loading, to mention only the most classical applications, as well as from its simple 
structure that allows fairly simple theoretical analysis. f i e  problem consists of selecting the 
set that maximizes the total profit from among a collection of N objects i = I ,  2, , , . , N, 
to each one of which is associated a profit ci > 0 and weights ak. > 0 (k  = 1, . , . , P). and 
subject to P linear capacity constraints. More specifically, introducing N binary variables 
si so that si = 1 if object i is selected and si = 0 otherwise, the problem is to find the 
vector s that maximizes the objective function or total profit 

(1.1) 

subject to 

Here aki is the weight of object i in knapsack k and bk is the capacity of knapsack k .  This 
problem, the so-called multi-knapsack problem, is a generalization of the standard knapsack 
problem ( P  = 1). Both problems belong to the NP-complete class, which basically means 
that the computational cost of any known deterministic algorithm for finding their exact 
solutions grows exponentially with the number of variables N (Garey and Johnson 1979). 

In this paper we consider the case where the aki are statistically independent random 
variables uniformly distributed over [0, 11, ci = 1 for all i and bk = b for all k .  The 
practical motivation for studying this type of random problem is for their widespread use 
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in the empirical evaluation of heuristic algorithms (Martello and Toth 1990, Ohlsson et 
al 1993). In this sense, analytical bounds for the optimal value of the objective function 
are highly desirable as they furnish valuable information used to evaluate the quality of 
the solutions found by heuristic algorithms. Since in practical applications the number 
of objects typically ranges from IO4 to IO5, the asymptotic limit N + 00, to which ow 
analysis is restricted, is not a too unrealistic assumption. 

Statistical mechanics techniques developed in the study of the infinite-range Ising spin- 
glass model-the SK model (Shemngton and Kirkpatrick 1975, Binder and Young 1986, 
Mbzard et al 1987thave  been employed successfully in the analysis of combinatorial 
optimization problems. In particular, stochastic versions of classical problems such as 
the graph partitioning problem (Fu and Anderson 1986), the weighted matching problem 
(Mbzard and Parisi 1985) and the travelling salesman problem (Vannimenus and Mbzard 
1984, Mkzard and Parisi 1986) have been investigated within the replica formalism. The 
main technical difficulty in using the replica approach to study these problems, as well as 
the knapsack problem, is the appearance of order parameters that measure the correlations 
between an arbitrary number of replicas. This makes the analysis very involved when 
compared with that of the SK model, which has equilibrium properties determined by an order 
parameter that measures the correlations between two replicas only. In a somewhat different 
vein, Priigel-Bennett and Shapiro (1994) have succeeded in analysing the performance of a 
class of general purpose heuristic algorithms-genetic algorithms (Goldberg 1989bwithin 
the statistical mechanics framework. More recently, another method from statistical physics, 
the finite-size scaling, has proved very useful in the study of threshold phenomena in random 
graphs and in the k-satisfiability problem (Kirkpatrick and Selman 1994). 

Our goal in this paper is to determine the dependence of the optimal profit density 
E, = E,/N on the knapsack capacities 6 = pN and on the number of constraints P. 
This problem has recently been investigated through statistical mechanics techniques by 
Korutcheva et al (1994) in the special case where P grows linearly with N and B = 1/4. 
As we will see below, however, E ,  -+ 28 for P -+ CO, so this is a rather uninteresting limit 
as far as the dependence of 6, on j 3  is concerned. Actually, those authors focused on the 
analysis of the O(l/&) fluctuations to the average value ofcm. The more interesting case, 
where P is finite, was investigated by Meanti er al (1990) using the Lagrangian relaxation 
technique (Held and Karp 1970, 1971). However, explicit results were presented only for 
the cases P = 1 and P = 2, mainly because those authors considered knapsacks of different 
capacities. 

To tackle the multi-knapsack problem in the finite P case we follow two approaches. 
First, we employ the annealed approximation within the microcanonical ensemble formalism 
of statistical mechanics to obtain an upper bound to 6, (Fontanari and Meir 1993). This is 
a very general technique for generating bounds for maximization or minimization problems 
that involve a search in a space of discreie vm.ables. We note that a similar method 
was developed in the canonical ensemble formalism by Vannimenus and Mbzard (1984) in 
the study of the travelling salesman problem. Second, building on the results of Meanti 
e t d  (1990) we use the Lagrangian relaxation technique to obtain the dependence of cm 
on j 3  for all P. Besides presenting these original results, the purpose of this paper is to 
draw the attention of the statistical physics community to the powerful, and well known to 
the operations research community, Lagrangian relaxation technique to generate rigorous 
bounds to optimization problems. In particular, although the multi-knapsack problem has 
recently been considered in physics literature (Korutcheva et ai 1994, Peterson 1993), there 
has been no reference to the important results obtained with that technique (Meanti et al 
1990). 
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The remainder of this paper is organized as follows. In section 2 we calculate an 
upper bound to the optimal profit density E ,  employing the annealed approximation in 
the microcanonical ensemble. In section 3 we follow Meanti et a1 (1990) to obtain exact 
estimates for E ,  using the Lagrangian relaxation technique. Finally, in section 4 we discuss 
OUT results and present some concluding remarks. 

2. Annealed approximation 

The basic quantity we must evaluate in the microcanonical ensemble formalism of the 
statistical mechanics is N(E), the number of feasible vectors s that possess profit E.  It is 
given by 

where the summation is over the 2N binary vectors s, O(x)  = 1 if x 2 0 and 0 otherwise, 
and S ( k ,  1) is the Kronecker delta. A vector s is feasible if it satisfies the constraints (1.2). 

According to the method of taking averages over extensive, and therefore self-averaging, 
quantities only (Binder and Young 1986), the physically meaningful average quantity 
associated to N is the average entropy S(E) = (hN(E)) ,  where (. . .) stands for the 
averages over the random variables ski. The optimal profit E,  is determined by the 
conditions S(E z E,) --f --CO and S(E < E,) 2 0. The evaluation of the quenched 
averages, however, involves enormous technical difficulties, so we consider instead the 
much easier to calculate, though physically meaningless, annealed entropy 

&(E)  = In(N(E)). (2.2) 

In particular, while S is clearly non-negative, Sa can take on negative values. The usefulness 
of Sa stems from the inequality Sa > S, which implies that the profit E; so that &(E;) = 0 
is an upper bound to E ,  (Fontanari and Meir 1993). 

We now proceed with the explicit calculation of the annealed entropy, equation (2.2). 
Using the integral representations of the theta and the Kronecker delta functions, it is 
straightforward to perform the averages over aki and the summation over S. The final result 
is 

Although the integrations can easily be evaluated for any finite E = E N  (Erdilyi 1954), the 
exact result, expressed as a finite alternating series of terms containing combinatorial factors 
and powers of N ,  becomes useless for any practical purpose since its evaluation for N not 
too small, say N = 10, requires the use of enormous numerical precision. Moreover, taking 
the asymptotic limit N + CO, which requires the use of Stirling’s formula, is hopeless since 
the series is alternating. Thus, we decide to take the large N limit already in equation (2.3), 
which allows us to perform the integrations by the method of steepest descents. We present 
only the final result, relegating the details of the saddle-point integration to the appendix. 

For E > 28, the average density of annealed entropy sa = S,/N is given by 

sa(€)  = - E  I U E  - (1 - E )  In(1 - E )  + P E  (2.4) 
Zk 
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where Zk is the unique solution of the equation 

1 k - COthZk + - = o  (2.3 

and k = 2 p f ~  - 1. For E < 28, the constraints play no role at all, being automatically 
satisfied by any vector s in the asymptotic limit, and so S. is given simply by the first two 
terms of equation (2.4). Thus, since the upper bound is given by the largest solution of 
sa(€) = 0 we find E: = 1 in this case. Note the trivial role played by P in the derivation 
of equation (2.4). In figure 1 we present E: as a function of ,9 < I /2 for P = 1.2,10 and 
100. 

Zk 

3. Lagrangian relaxation 

Lagrangian relaxation is a general technique developed by Held and Karp (1970, 1971) 
for generating bounds to the objective function of combinatorial optimization problems that 
involve constraints (see Beasley (1993) for a recent review on this subject). The basic idea is 
to attach Lagrangian multipliers to some set of constraints and then relax these constraints 
into the objective function. In our specific problem, we relax the constraints (1.2) by 
introducing P Lagrange multipliers X = (h l ,  A*. . . . , h p )  into the objective function (1.1). 
which is then written as 

where hk 2 0. As we will see below, the relaxation of the integrality constraint so that 
0 < si < 1 also has no effect in our analysis. To show that L does in fact give an upper 
bound to E for any X we consider the problem of maximizing 

(3.2) 

subjecr to b-Ci akisi > 0. Since hk 2 0, the second term of M is positive for any feasible 
vector s and, therefore, M 2 E .  Finally, by noting that the relaxation of constraints (1.2) 
can only increase the objective function we conclude that L > M > E .  

The problem then becomes, for a given A, one of finding the vector s that maximizes 
L. Since there are no constraints, its solution is simply si = 1 if 1 - XtUkihk > 0, and 
si = 0 otherwise, which yields 

(3.3) 

To make this upper bound as tight as possible, we must choose the Lagrangian multipliers A 
so as to minimize L. At this point we can already realize the main benefit of the Lagrangian 
relaxation method: the search in the discrete N-dimensional space of s is replaced by 
a search in the continuous P-dimensional space of A. This, of course, can be a great 
advantage when N is large and P is small. The disadvantage is that, in general, we obtain 
only an upper bound for the optimal profit. 
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Since the components of the optimal solution s are integral, the relaxation of the 
integrality requirement has no effect in our analysis. The Lagrangian relaxation of the 
knapsack problem considered above is then said to have the integruliry properly. This fact 
has an important consequence: if L ,  denotes the minimal value the upper bound L(A)  can 
take, then L ,  will be equal to the value of the profit obtained with the h e a r  programming 
(LP) relaxation of the original problem (Beasley 1993). In the LP relaxation, we relax the 
integrality requirement on the variables si, so that 0 <si < 1, and maximize the profit (1.1) 
subject to constraints (1.2) using some standard algorithm (simplex or interior point), As 
pointed out by Meanti et a1 (1990). the solution of the LP relaxation has at most P variables 
that are neither 0 nor 1. Thus, rounding down the values of these variables yields a feasible 
vector s which has a corresponding profit value, given by L,, decreased by at most P. 
Therefore, we have the inequalities 

L, 2 E ,  2 Lm - P. (3.4) 

Dividing by N and taking the limit N + 00 with P finite, we conclude that I, = L, /N 
converges with probability one to E ,  = E,/N for any realization of the random variables 
ut.. Furthermore, in this limit the statistical independence of the random variables 
uki guarantees that I (A )  = L ( A ) / N  converges with probability one to its mean value 
( l ( A ) ) / N  = ( l ) ( A ) / N  for all A. This result is due to the property of self-averageness of 
the extensive quantity L(A) .  In particular, if A' is the vector of Lagrangian multipliers that 
minimizes (/)(A) then it follows that /,, and therefore E,, will converge with probability 
one to (l)(A'). We refer the reader to Meanti et al (1990) for a rigorous proof of these 
results. 

The above mentioned results make the evaluation of E ,  rather straightforward first 
we must carry out the averages over uti in equation (3.3) and then minimize the resulting 
expression, ( L ) ,  with respect to A. This was the procedure adopted by Meanti et ai (1990) 
who, however, considered knapsacks of different capacities, i.e. bk = P t N .  This makes 
the minimization with respect to A more complicated and adds, besides the evaluation of 
the averages, another serious technical difficulty to the analysis. As a consequence, explicit 
results were presented only for P = 1 and P = 2. 

Since in this paper we consider ,3k = ,3 for all k ,  we can make the simplifying 
assumption that A; = A* for all k because the statistically independent random variables uk# 
are identically distributed. With this assumption we write E ,  as 

with A* given by the solution of ae,/ah* = 0. The direct evaluation of the averages in 
equation (3.5) is simple only for small P. For instance, for P = 1 we find 

E,=m 8 < 1 / 2  (3.6) 

while for P = 2 we find 
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where x E (1,2) is a root of the cubic equation 

x3 - 3 2  + 1 +68 = 0. (3.9) 

The calculations for P > 2 are too cumbersome so we try to evaluate the averages 
for general P by first extracting the random variable G a x  from the argument of the 
theta function using a delta function, and then performing the averages. Canying out this 
procedure yields 

Though we could use a procedure similar to that presented in the appendix to evaluate the 
double integral for large P, we follow a much simpler approach based on the approximation 

a4 (7)  ti exp(-My2/6) (3.11) 

which is valid for large M. With this approximation, the integrals in equation (3.10) become 
Gaussian and, therefore, can easily be performed, yielding 

where 
lp.* - P/2 
m e =  

is the solution of the equation 

(3.12) 

(3.13) 

(3.14) 

Here, H ( x )  = 6 d f  /&exp ( 4 1 2 ) .  This equation possesses a unique solution, except 
at 

Although equation (3.12) is in principle valid only for large P, in figure 2 we  compare 
the results obtained for P = 1 and P = 2 using this equation with the exact results obtained 
using equations (3.6)-(3.8). The agreement between them is remarkably good for ,9 not 
too small and, in the scale of figure 1, they are practically indistinguishable for P = 2. 
Of course, this agreement is expected to become even better for larger P. Hence, we 
consider that following the laborious saddle-point integration procedure of the appendix 
(the prefactors cannot be neglected in this case) is not necessary. We must emphasize, 
however, that the correct procedure to evaluate the double integral in the limit of large P is 
the one given in the appendix. In particular, applying approximation (3.1 1) to the annealed 
calculation of section 2 gives very poor results for small B and P. However, the results 
become better as P increases and, in the scale of figure 1, they are indistinguishable from 
the results obtained through the saddle-point integration for P z 5. 

Together with the upper bound e:, we present in figure 1 the exact estimate for cm for 
P = 1 and P = 2 obtained using equations (3.6)-(3.8), and the approximate estimate for 
P = IO and P = 100 obtained using equation (3.12). Since c, reaches it5 maximal value 
at .8 = 112 it will obviously remain at that value for f i  z 112. We note that cm + 2g for 
P + 00. 

= 0 where the spurious solution 5 3 -CO is also present. 
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0.0 0.1 0.2 0.3 0.4 0.5 

P P 

Figure 1. Optimal profit density c, as a function of 
the knapsack opacities ,9 for. from tap to bottom, 
P = I .  2, 10 and 100. The broken curves are the 
annealed upper bounds f;. The full curves are the 
exact (P = 1,Z) and the approximate (P = IO, 100) 
estimates for Em. 

Figure 2. Exact (full curves) and approximate (broken 
curves) estimates for f, far. from top to bottom, P = 1 
and P = 2. 

4. Conclusion 

It is very unfortunate that the annded approximation, which seems to be the soIe general 
tool of statistical mechanics to generate rigorous bounds to integer programming problems, 
gives such poor results for the multi-knapsack objective function. This conclusion follows 
from the comparison, presented in figure 1, between the annealed upper bound and the exact 
value of the optimal profit calculated via the Lagrangian relaxation method. It should be 
noted, however, that the annealed calculations can easily be extended to the regime where 
P depends on N (Korutcheva et al 1994), whereas the results of Meanti et al (1990). on 
which the Lagrangian relaxation approach is based, are not valid in this regime. 

The main result of this paper, which we hope may be of practical use in the evaluation 
of the performance of heuristic algorithms, is equation (3.12) which, within a reasonable 
degree of accuracy, gives the optimal profit density as a function of the knapsack capacities 
p for any finite number of capacity constraints P .  
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Appendix 

In this appendix we evaluate explicitly the double integral 
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in the limit E = 6N + 03. A simple change of variables allows us to rewrite this equation 
as 

where 

sin y 
Y 

G(k,  y )  = iky + I n  -. 

The integration over y can then readily be performed using the method of steepest descents. 
For I k I< 1, the saddle-point is the imaginary y = yk = iZk, where zk  is the solution of 
k - cothzk + 1/Zk = 0. Hence, the function G ( k .  yk) = C(k) ,  where 

is real. For Ikl z 1, there is no saddlepoint and the integral vanishes due to the rapid 
oscillations of the integrand. This last result is in agreement with the result of the exact 
integration over y @r&lyi 1954). Thus, equation (A2) reduces to 

where G"(k) = k2 - 1 + 2k/zk. This integral can be evaluated using the method of Laplace. 
The real function G ( k )  is negative for all k except for k = 0 where it assumes its maximal 
value, G(0) = 0. The value of the integral depends, then, on whether k = 0 belongs or not 
to the interval of integration. In the case when E < 28 it does belong, and the integration 
yields 

For E > 28, the maximum of G occurs at the upper extreme of integration, yielding 

1 
lim -In r = CG (28/6 - 1) 

N-tm N 
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